14) Polovodiče

14) Polovodiče V roce 1821 odhalil Thomas Seebeck polovodičové vlastnosti síranu olovnatého. V roce 1833 referoval Michael Faraday o teplotní závislosti polovodičů a v roce 1873 objevil citlivost polovodiče selenu na světlo, což využil Werner von Siemens při vynálezu selenového fotometru. V roce 1876 již byly známy usměrňovací schopnosti selenu. Polovodičové zařízení bylo známo již na počátku 20. století, kdy se používala hrotová elektroda (anglicky cat's-whisker), která sloužila jako základ krystalky (rádio). Cílená výroba polovodičových (germaniových) diod byla uskutečněna až po velkém úsilí v roce 1940. Výrazným mezníkem v historii elektroniky byl vynález tranzistoru v Bellových laboratořích v roce 1947. Integrovaný obvod vyrobil v roce 1958 Jack Kilby. Obsahoval v jednom pouzdře čtyři tranzistory a byl dalším zlomem v rozvoji elektroniky Polovodič je pevná látka, jejíž elektrická vodivost závisí na vnějších nebo vnitřních podmínkách, a dá se změnou těchto podmínek snadno ovlivnit. Změna vnějších podmínek znamená dodání některého z druhů energie – nejčastěji tepelné, elektrické nebo světelné, změnu vnitřních podmínek představuje příměs jiného prvku v polovodiči. Mezi polovodiče patří prvky křemík, germanium, selen, sloučeniny arsenid galia GaAs, sulfid olovnatý PbS aj. Většina polovodičů jsou krystalické látky, existují však také polovodiče amorfní (některá skla). Polovodiče se využívají u elektronických součástek Polovodič typu N obsahuje také i díry, ale ty vznikají jako produkt působení teploty, jsou to vlastní nosiče náboje. Jejich množství je závislé na teplotě polovodiče (s rostoucí teplotou roste). Tyto díry jsou v polovodiči menšinovými (minoritními) nosiči náboje. Připojíme-li polovodič typu N ke zdroji napětí, jsou volné elektrony usměrněny elektrickým polem a pohybují se od záporného pólu ke kladnému pólu zdroje. Polovodič typu P obsahuje také i volné elektrony, ale ty vznikají jako produkt působení teploty, jsou to vlastní nosiče náboje. Jejich množství je závislé na teplotě polovodiče (s rostoucí teplotou roste). Tyto elektrony jsou v polovodiči menšinovými (minoritními) nosiči náboje. Pokud na polovodič typu P přiložíme zdroj napětí, volné elektrony budou přeskakovat do děr směrem od záporného pólu zdroje ke kladnému a díry se budou pohybovat od kladného pólu zdroje k zápornému. Závislost vodivosti a odporu na teplotě Vodivost, resp. odpor polovodičů závisí na teplotě. S rostoucí teplotou se zvyšuje vodivost, resp. snižuje odpor polovodičů. To lze vysvětlit větším počtem uvolněných elektronů při zvýšeném tepelném pohybu. Změnu odporu ΔR na teplotě popisuje vztah , kde R0 je počáteční odpor polovodiče, α je teplotní součinitel odporu (záporná hodnota), Δt je rozdíl teplot. Závislost vodivosti a odporu na teplotě odlišuje polovodiče od kovů, u kterých je tato závislost opačná (hodnota je u kovů kladná). Vlastní vodivost polovodiče Čisté polovodičové prvky (např. křemík či germanium) mají při teplotě absolutní nuly (-273,15 °C) valenční elektrony pevně lokalizovány ve valenční vrstvě – ustává tepelný vířivý pohyb atomů a krystal se chová jako izolant (má téměř nekonečný elektrický odpor, resp. nulovou elektrickou vodivost). Dodáme-li tomuto krystalu energii formou záření (tepla, světla), atomy začnou tepelně kmitat, dojde k porušení některých kovalentních vazeb - některé valenční elektrony, které byly předtím pevně vázány, získají dostatek energie k překonání zakázaného pásu a přeskočí z valenčního pásu do vodivostního a budou se neuspořádaně pohybovat prostorem krystalové mřížky (mezi atomy). Na takto „postiženém“ místě, kde vyskočil valenční elektron z vazby, vznikl nedostatek záporného náboje (přebytek kladného náboje), kterému říkáme defektní elektron, zkráceně díra. Vznik páru elektron-díra nazýváme generací. Díra a elektron vznikají současně. Při nepřetržitém dodávání energie se bude uvolňovat stále více volných elektronů a vznikat více děr. Krystalem neuspořádaně se pohybující volné elektrony jsou přitahovány dírami. Když se setká volný elektron s dírou, zaniknou a utvoří tak opět pevnou vazbu. Jelikož elektrony přeskakují z díry do díry, jeví se nám toto přeskakování elektrony zároveň i jako pohyb děr. Tento proces se nazývá rekombinací. Takto popsaný děj (generace a rekombinace) se v látce na mnoha místech neustále opakují. Popsaný druh vodivosti podmíněný vznikem volně pohyblivých párů nosičů náboje elektron-díra v důsledku rozbíjení vazeb mezi atomy čistého polovodiče, nazýváme vlastní (intrinzická) vodivost polovodiče. Pro dělení polovodičů existuje několik možných hledisek. • Dle struktury o organické o anorganické  amorfní polovodiče – např. chalkogenidová skla, amorfní Si  (mono)krystalické polovodiče – např. monokrystaly Si, Ge, GaAs  prvky  sloučeniny  dvojné  trojné  vícesložkové • Dle hlavních nositelů náboje o n-polovodiče – majoritními nositeli náboje jsou elektrony (e–) o p-polovodiče – majoritními nositeli náboje jsou elektronové vakance, tzv. díry (h+) • Dle původu nositelů náboje o polovodiče vlastní (intrinsické) – polovodivé vlastnosti jsou materiálu vlastní např. polovodiče vysoké čistoty o polovodiče nevlastní (extrinsické) – polovodivé vlastnosti materiálu materiál získá, popř. jsou tyto vlastnosti výrazně zesíleny dopováním příměsovými prvky např. polovodiče dopované (Si p,n typu) • Dle charakteru přeskokového mechanismu mezi pásy o přímé polovodiče – při přeskoku nedochází ke změně hybnosti nositele náboje o nepřímé polovodiče – při. přeskoku musí dojí ke změně hybnosti nositele náboje, většinou se tak děje srážkou s fononem (kvazičástice kmitu mřížky), např. Si. • Dle statistického rozložení nositelů o polovodiče nedegenerované o polovodiče degenerované